#» VERY

3& GOOD

VENTURES

How Agentic Al
Systems Drive
Business Leverage
& Scalable Impact

A comprehensive guide to designing,
implementing, and scaling autonomous Al
systems that deliver measurable business value

Agentic systems are changing how
product and engineering teams
approach delivery.

Static workflows with predefined
paths are no longer enough—
teams must design systems that
can observe, decide, and act
independently.

Static workflows with predefined paths
are no longer enough—teams must
design systems that can observe, decide,
and act independently.

But that level of autonomy without
architecture is chaos, and the agentic
hype without proper processes leads to
failed pilots.

Success depends on answering the right
questions:

4 What should it do?

* How do we ensure useful
responses?

4 What guardrails need to exist
for success?

Let’s dive into how to approach
solutioning agentic systems—not just a
technical solution, but one that covers the
business and user perspectives.

Defining Agentic Systems

Using Al alone doesn’'t make a

system agentic—it’s the presence of
autonomy, goal-oriented outcomes,
and adapting behaviors. The
autonomy might be fully Al powered
or rule based with simple triggers and
policies, but the defining feature is
decision-making delegation.

These systems are able to reason over
context, make decisions based on
policies, and perform actions without
being controlled at every step.

In a self-service agentic system,
autonomy extends beyond
conversation. For example, an
intelligent agent could coordinate
multi-step workflows such as event
planning or travel booking—interpreting
user intent, gathering context from
connected APIs, and executing
transactions like reservations or
payments without manual intervention.

These systems integrate reasoning,
policy constraints, and contextual
awareness to balance autonomy with
control, ensuring that every decision
aligns with business logic and user

preferences. By combining goal-
driven reasoning with data integration
and real-time feedback, agentic
systems transform static interfaces
into adaptive, decision-making
environments capable of managing
complex, end-to-end user journeys.

Single vs. Multi-Agent Systems

Single agent systems are easiest to
deploy. They typically drive linear flows
like a chatbot, make recommendations,
or power personalization modules.

Multi-agent systems add
coordination, parallel actions, and
delegation. They help solve broader
problems across multiple roles or tools,
and add complexity around state,
priority, and conflict resolution.

If your solution uses rigid, pre-
programmed rules, lacks real-time
feedback, and can't adapt based on
results, then it's simply automation.
Agentic systems are characterized
by their autonomy and goal-oriented
intent.

vGv

A single agent
system can

automate
a task

+ + 4+

A multi-agent
system can

simulate
ateam.

vGv

Business Perspective:
What Leaders Need to Get Right

Agentic systems aren't built for novelty—they're built for leverage.

That means getting more done with the same team, delivering faster
outcomes, and maintaining quality at scale. Whether automating
workflows, surfacing insights, or creating delightful user experiences, the
value comes from reducing effort per outcome. However, that leverage
only occurs when the system is intentionally scoped and aligned with
business goals.

Think of your agent not as a feature, but as a capability. It should
drive clear goals like improving customer experience, increasing user
conversion, or reducing cost per action. If this isn’t defined, you don't
have a clear use case, you have an experiment.

Questions Leaders Must
Answer Before Development

What outcome are we trying to automate, accelerate, or improve?

How will we measure impact (e.g. cost, time, satisfaction, accuracy)?

What decision can we safely delegate to an agent?

Where do we need to keep the human in the loop?

What is our risk tolerance if the agent gets it wrong?

User Perspective:

vGv

Designing for Trust, Control, and Clarity

Agentic systems are redefining user experiences. Instead
of simply reacting to commands, they make autonomous
decisions, sometimes proactively and often without the
user knowing. This shift creates both opportunity and risk,
because when users can’'t see or understand what the
system is doing, trust becomes fragile.

The system may work perfectly, but if the user can’t predict
its behavior, it won't matter.

Agentic UX Design Principles

©

Transparency

Users need to know
what the system is
doing, what inputs
it relies on, and why
it's acting as it is.

Controllability

Let users intervene,
stop, or override
agent behavior
when needed.

Clarity

Make the agent'’s
role obvious. Don't
assume users will
infer its purpose.

N
N~

Feedback

Loops

Capture feedback
in a way that allows
the system to
improve over time.

Y

Fail-Safe
Defaults

If the agent is
unsure, it should
do nothing.

vGv

Defining Interaction Models

Agent as Assistant

Visible, optional, and user-triggered elements like
chatbots, helpers, and Ul overlays.

Agent as Orchestrator

Invisible system logic that coordinates actions like
personalized feeds and background automation.

Agent as Actor

Active agent that initiates tasks or decisions like auto-
replies, autonomous triage of issues, and auto scheduler.

VGV

Data Infrastructure & Readiness:

Agentic systems require context to
function, which only exists if the system
has access to timely, structured,

and complete data. When data is
fragmented, stale, or locked in silos,
agents guess instead of making smairt,
informed decisions. Most failures
attributed to “bad Al” are actually
failures of data flow.

To support meaningful autonomy, you
need a clean foundation. Your system
should provide real-time access to
key inputs, consistent metadata, and
semantic structure. This allows the
agent to understand what it sees and
act with precision, not probability.

Clean
Foundation

=

Real-time access to
key inputs, consistent
metadata, and
semantic structure

Retrieval
Infrastructure

=

Vector databases and
embedding pipelines
for context and
memory

Feedback is equally critical. Agents
must learn over time through direct
signals (like a user rejection) or
behavioral patterns. This requires
instrumentation; your system must

log user behavior, agent actions, and
outcomes in a way that enables future

tuning.

Modern agents also depend on
retrieval infrastructure. Vector
databases, feature stores, and low-
latency embedding pipelines form
the core of agentic context. These let
agents recall facts, adapt behavior,
and personalize interactions. Without
them, autonomy fails.

Feedback
Systems

Log user behavior,
agent actions,
and outcomes
for continuous

improvement

Security &
Observability

Least-privilege
principles with

logged, observable,

auditable decisions

4 Your infrastructure
determines how much
leverage your agents can
create. With the right systems
in place, a single agent can
drive real impact. Without
them, even the best models
will underperform.

vGv

Organizational Readiness

Agentic systems require context to function, which only exists if the
system has access to timely, structured, and complete data. When
data is fragmented, stale, or locked in silos, agents guess, instead of
making smart, informed decisions. Most failures attributed to “bad
Al” are actually failures of data flow.

Role Clarity

Someone must own the system’s decision logic. This isn't
about who writes the code, but who defines what the
agent should decide, how success is measured, and where * You can’t expect
guardrails must exist. Whether that role lives in engineering, autonomy in your
product, or elsewhere, it must be named and empowered.

product if you don't
have autonomy in
your teams.

Feedback Model

Agentic systems introduce new elements, such as
behaviors, misfires, and the need for refinement. You need
clear mechanisms to handle these elements. Without this
loop, the system will degrade or stagnate.

Team Structures

Agent systems span multiple different domains—backend,
frontend, UX, analytics, and often, legal or compliance.
They require cross-functional collaboration and a shared
cadence.

Cultural Readiness

Teams must treat agents as products, not projects. That
means scoping tightly, validating early, iterating often,

and supporting teams through failure modes. Agents

will behave unexpectedly—it's important that rather than
rushing to blame, your team focuses on investigating, fine-
tuning, and improving.

vGv

Technical Architecture:
How to Design the System for an Agent

You can't simply wire an LLM into your agentic system. It
requires thoughtful architecture, intentional integration,
and the ability to reason in context.

This brings us back to our original, core question of what
the agent should know, decide, and act on.

There are three layers all agents need:

Perception

What the agent knows.
This includes event data,
embeddings, logs, and
system state.

Reasoning

How does it make decisions?
What are its goals? Policies?
Memory or models? This
can take the form of a rules

Action

Does the agent write to a
database, trigger an API call,
send a message, or require
human interaction?

engine, prompts, or multi-
modal inputs.

Q

Orchestration Patterns Critical Elements

Agentic systems vary in how they coordinate work. How
agents are arranged depends on what the system
needs to accomplish and how much coordination

is required. These patterns reflect different ways to
structure autonomy and shared context across tasks.
Some patterns include:

If you wouldn't ship a backend
with no logs, metrics, or
rollback strategy, don’t ship
an agent without them either.
A comprehensive agentic
system must have:

< Retrieval layer

* Asingle agent that's embedded in a product flow.

* Ablackboard model, where agents contribute
partial solutions and share state to solve a problem.

¢ A multi-agent graph with discrete agents handling
discrete responsibilities and delegating work to each
other. Circuit breakers

© oObservability tooling

Case Patterns
& Key Risks

The best way to scope an agentic solution is to ground it in
repeatable patterns. These are scenarios where autonomy
can replace human intervention without sacrificing accuracy
or control. Ideally, in places where they create measurable
value and the answer to the question, “Should the system
handle this instead of a human?”, is a resounding yes.

Workflow Acceleration

Anywhere that decision logic is well understood, but operationally slow.
For example, in support ticket or claims triage, request classifications,
and approvals routing. A well-designed agent can review, categorize, and
respond in seconds instead of minutes.

Content Intelligence

Agents are great at summarizing, labeling, and repackaging content
for different formats or audiences. It can turn high-cost efforts into low-
latency reuse.

High-Value Use Cases

Personalization & Navigation

Anywhere that decision logic is well understood, but operationally slow.
For example, in support ticket or claims triage, request classifications,
and approvals routing. A well-designed agent can review, categorize, and
respond in seconds instead of minutes.

Key Risks to Account For

Misaligned
Autonomy

Agent takes an action in
a way that violates user

trust or expectations.
Clear guardrails and
escalation logic are
required. Avoid putting
users into opaque loops
they can't exit or control.

Lack of
Explainability

Decisions aren’t traced
or justified. Observability
should be built in and
reasoning review should
contribute to future
cases.

Technical
Fragility

Poor integration into
existing systems or

brittle dependencies.
Orchestration frameworks
and abstraction layers
can alleviate dependent
systems from being
affected.

Overpromising
Outcomes

Agents aren’'t magic and
won't solve everything.
They require validation
plans, guardrails, and
measurable outcomes.
Ensure early use cases
have measurable ROI
and fast learning cycles.

How to Get Started:

vGv

Workshop, Prototype, and Validate

The most successful initiatives don't
start with a roadmap, they start with a
workshop. A well-run workshop brings
together product, engineering, and

operations to identify potential use cases.

From there, frame use cases around a
few core questions:

4 Whatdecisions are being made
that can be automated?

<4 Whatinput data is available?

4 What does a safe, autonomous
version of this flow look like?

Once all parties are aligned, prototyping
begins to validate architecture, data
inputs, and feedback systems. This is
what informs usefulness, observability,
and edge cases.

This pattern of workshop, prototype, and
validation reduces risk, reveals design
needs, and helps build stakeholder
confidence. This is how we transition
clients from idea to production-ready
agent.

+

Start small. Identify the friction.
Run a workshop. Build a prototype
that addresses a clear business
goal. Put it in front of users and
measure what changes.

It's not just about shipping a
feature, but building a system that
enables us to do more, faster.

Want to get started?

We help organizations design, build,
and scale agentic systems that deliver
measurable business value.

We can help!
Visit verygood.ventures to learn more,

or scan the QR code to get started.

s VERY
39 GOOD
V' VENTURES

